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In 1988, Felsenstein described a framework for assessing the
likelihood of a genetic data set in which all of the possible
genealogical histories of the data are considered, each in propor-
tion to their probability. Although not analytically solvable, several
approaches, including Markov chain Monte Carlo methods, have
been developed to find approximate solutions. Here, we describe
an approach in which Markov chain Monte Carlo simulations are
used to integrate over the space of genealogies, whereas other
parameters are integrated out analytically. The result is an approx-
imation to the full joint posterior density of the model parame-
ters. For many purposes, this function can be treated as a likeli-
hood, thereby permitting likelihood-based analyses, including
likelihood ratio tests of nested models. Several examples, including
an application to the divergence of chimpanzee subspecies, are
provided.

speciation � population structure � divergence

Population genetic and phylogenetic models that take a
genealogical (i.e., gene tree) approach suffer two nested

levels of ambiguity. First, the uncertainty of an estimate of a
genealogy can be large and difficult to quantify, and second, it
can be difficult to interpret a genealogy estimate explicitly in
terms of an evolutionary or population genetics model. In his
1988 review, Felsenstein (1) conceptualized a way thru these
uncertainties by positioning the genealogy as a nuisance variable
in the definition of the likelihood of the parameters given the
data (proportional to the sampling probability of the data):

L���X��Pr�X ��� � �
G��

Pr�X �G�p�G ��� , [1]

where X is the data, G is a genealogy, � is the set of all possible
genealogies, and � is the vector of model parameters to be
estimated. The basic idea of considering all of the possible
genealogies in proportion to their probability is also contained
explicitly in the recursion approach of Griffiths (2) and is
suggested in much other work on genealogical models. Although
Felsenstein used the notation for summation, integral forms
have often since been used, reflecting the fact that genealogies
are complex entities with both discrete components (branching
topology) and continuous components (branch lengths).

Felsenstein’s equation does not have a general closed-form
solution, and numerical evaluation is difficult because of the very
large number of possible tree topologies for even small data sets. It
is possible to approximate Eq. 1 by simulating k independent
genealogies from p(G��), G1, . . . , Gk, in which case, a simulation-
consistent estimator of the likelihood can be obtained as

L���X� �
1
k �

i�1

k

Pr�X �Gi� . [2]

However, this is usually far too inefficient, because the variance
in Pr(X�G) will be very large for randomly generated genealogies.
Efficient stochastic evaluation of Eq. 1 requires the availability
of methods for sampling G with some consideration of the data.
For a given parameter value, �, the distribution of G that
minimizes the simulation variance is

p�G�X, �� � Pr�X �G�p�G ����Pr�X ��� . [3]

However, direct sampling from this distribution is not possible
because it requires that the likelihood function can be calculated
analytically (3).

Kuhner, Yamato, and Felsenstein (1995). A solution to the question of
how to sample genealogies was described by Kuhner et al. (4), who
devised a Markov chain Monte Carlo (MCMC) simulation ap-
proach. In the simulation, updates of G are accepted with proba-
bility given by the Metropolis–Hastings (5, 6) criterion

min� 1,
Pr�X �G��p�G����q�G�3 G�

Pr�X �G�p�G ���q�G 3 G�� � , [4]

where q(G 3 G*) is the probability that G* is proposed as an
update from G. At stationarity, the residence time in the Markov
chain will be proportional to the posterior density of that
genealogy (i.e., as given by Eq. 3), and trees sampled successively
from the Markov chain are correlated draws from the posterior
density of genealogies.

The approach devised by Kuhner et al. and used thereafter for a
variety of models (7–10) is to use the genealogies that have been
sampled by using one parameter value, �0, to estimate the relative
likelihood for other values. The likelihood surface for � is obtained
by running a Markov chain at a fixed value �0 close to the mode
of the likelihood function while evaluating the likelihood for
multiple values of � by using importance sampling (11). Let
p(G��0) be p(G��) evaluated at the point � � �0, and assume
p(G��0) � 0 if p(G��) � 0 for all � and G. Then from Eqs. 1 and
3, we see that

Pr�X ���

Pr�X ��0�
� �

�

Pr�X �G�w�� , �0, G�p�G ��0�

Pr�X ��0�
dG

� EG�X, �0
�w�� , �0, G�� , [5]
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where w(�, �0, G) � p(G��)/p(G��0). A single set of values of
G are drawn from p(G�X, �0) (i.e., by sampling from the Markov
chain) and used to estimate the relative likelihoods for other
values of �:

L���X�

L��0�X�
�

1
k �i�1

k wi��, �0, Gi�, [6]

where wi(�, �0, G) and G(i) are the value of wi(�, �0, G) and G,
respectively, in the ith sampled step of the chain.

The method of Kuhner et al. (4) was the first true MCMC method
in population genetics, and it showed that likelihood inference of
population genetics parameters is possible for complex mutational
models. It lead to the development of related methods (12–14), and
it preceded the use of closely related MCMC methods for phylo-
genetic inference (15–17). However, it suffers the significant short-
coming that the distribution of wi(�, �0, G) will be very skewed
when � differs from �0, causing the variance of the estimate of the
likelihood to be very large and difficult to estimate when �� 	 �0�
is large (14, 18). Because of the skewed distribution of wi(�, �0, G),
the method will tend to underestimate the likelihood when � differs
from �0 and thus bias the estimator toward values close to �0.
Kuhner et al. (4) address the problem of large variance when �� 	
�0� is large by running multiple chains and updating �0 each time
the chain is restarted (19).

An alternative to MCMC sampling of genealogies is the sequen-
tial importance sampling method of Griffiths and Tavaré (20, 21).
Stephens and Donnelly (22) suggested a modification of the ap-
proach of Griffiths and Tavaré that samples more efficiently from
an approximation to Eq. 3.

Bayesian MCMC. One way to extend the MCMC approach to
generating likelihood surfaces is to explicitly consider a prior
distribution of �, p(�), and to simulate a Markov chain with
stationary measure given by the joint posterior density of G and �,

p�G, ��X� � Pr�X �G�p�G ���p����Pr�X� [7]

(12, 14, 23). This approach, of running a Markov chain over a
state space of genealogies and model parameters, has been
extended to multilocus applications for a variety of models
(24–27). Apart from having a large state space and associated
MCMC mixing challenges, the main shortcomings stem from the
essential form of the result, which is not a function estimate but
merely a record of parameter values. Density estimates can be
obtained by binning or by kernel estimators, but the nature of the
results effectively precludes estimates of the joint posterior
density for models with more than a small number of parameters.
In such cases the volume of the parameter space is so large that
the number of recorded values that will fall in any portion of it
may be low, even for very long runs and even for portions of the
parameter space associated with high posterior densities. Be-
cause of this ‘‘curse of dimensionality,’’ the number of samples
needed increases exponentially with the dimension (28). This
means that applications have mostly been limited to the gener-
ation of estimates of the marginal posterior densities for each of
the model parameters. It also means that it has been difficult to
estimate likelihood ratios for models involving several parame-
ters. Here, we propose a method that eliminates the need for a
driving value (�0) and that generates estimates of the entire
posterior probability density function, suitable for optimization
and likelihood-ratio tests of nested models.

Theory. This approach relies on the analytical calculation of the
prior probability of G by integration of p(G��) over the prior
distribution of �. This makes it possible to draw samples by MCMC
directly from the marginal posterior probability of genealogies,

p(G�X). Then, using a sample of these genealogies, one can con-
struct an estimate of the posterior density function, p(��X).

As we will show, the calculation of the marginal prior density of
genealogies,

p�G� � � p�G���p���d�, [8]

can be done analytically and easily when p(�) has a uniform
distribution. Access to the prior for G permits an MCMC
simulation that has a marginal posterior density for G given by

p�G�X� � Pr(X �G)p�G��p�X� [9]

(contrast with Eq. 7). Then, the posterior density for � is given by

p���X� � �
�

p���G�p�G�X�dG [10]

(contrast with Eq. 1). This can be proved by noting that under
the proper scaling, p(X�G, �) � Pr(X�G) (4). Then p(��G, X) �
Pr(X�G, �)p(��G)/Pr(X�G) � p(��G), and Eq. 10 follows by the
law of total probability.

The posterior density of � can then be consistently estimated as

p���X� �
1
k �

i�1

k

p���Gi� , [11]

where Gi, i � 1, 2, . . . , k, are the samples from p(G�X) that are
generated by the MCMC simulation. Inferences can then be
based on p(��X) or on the likelihood function deduced as L(�) �
p(��X)/p(�). If p(�) is a constant, then the posterior probability
is directly proportional to the likelihood over the prior range of
�. In effect, a Bayesian sampling strategy is being used to
generate an estimate of the relative likelihood, which can be used
in turn to find a maximum likelihood estimate of � and to
conduct other likelihood-based analyses. It is also useful to note
that Pr(X�G) is not part of the final calculation in Eq. 11. As in
the method of Kuhner et al., (4) the data are used to determine
the probability density from which the genealogies are sampled
and thereafter are not required (29).

A Single-Population Model. Consider a model in which � includes
just one parameter, � � 4Nu, and a sample of n gene copies, for a
locus with neutral mutation rate u, drawn from a population with
effective chromosomal population size 2N and evolving according
to Kingman’s coalescent (30). Letting the coalescent times in the
genealogy be � � {�2, . . . , �n}, where �i is the time interval in G in
which there are i ancestors of the sample, then

p�G��� � �2
�
	n	1

exp(	2fn��), [12]

where

fn � �
i�2

n

�ii�i � 1�

is the total coalescent rate measured over the genealogy (30, 31).
If we consider a uniform prior distribution for � over the interval
{0, �max}, then placing Eq. 12 into Eq. 8 yields
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p�G� �
1

�max
�

0

�max � 2
�
	 n	1

exp�	2ƒn���d�

�
2ƒn

	�n	2�
�n � 2, 2ƒn��max�

�max
, [13]

where 
(a, b) is the incomplete Gamma function with param-
eters a and b. Similarly, we find

p���G� �
p�G���p���

p�G�
�

�2
�
	n	1

exp(	2ƒn��)

2ƒn
	(n	2)
(n	2, 2ƒn��max)

.

[14]

Generation of the estimate of the posterior density function,
which is a sum of functions in the form of Eq. 14 (see ref. 11)
requires only that fn be recorded at intervals from the Markov
chain simulation.

Multipopulation Models. Now consider a family of models (so-
called ‘‘island models’’) in which multiple populations, each of
constant size, have been exchanging genes at constant rates for
sufficiently long that the probability of a genealogy is solely a
function of population sizes and migration rates (32, 33). Here,
we develop the case for two populations with a pair of population
size parameters (�1, �2) and two scaled migration rate parame-
ters (m1 and m2) (8), but the approach can be extended to any
number of populations.

For a sample of n1 and n2 gene copies, from each population
respectively, G will include n1 � n2 	 1 coalescent events as well as
a variable number of migration events. Let c1 and c2 be the number
of coalescents in populations 1 and 2, respectively; and let w1 and
w2 be the number of migration events out of population 1 and 2,
respectively. When the coalescent and migration events are ordered
in time, there are a total of a � n1 � n2 � w1 � w2 	 1 time intervals.
The probability density of the genealogy, as a function of the
parameter set � � {�1, �2, m1, m2}, is

p�G��� � �2��1�
c1exp�	ƒ1��1� � �2��2�

c2exp�	ƒ2��2�

� m1
w1exp(	g1m1) � m2

w2exp(	g2m2), [15]

where the f and g terms refer to the total coalescent and
migration rates, respectively, over the corresponding portions of
G, such that

ƒ1 � �
i�1

a

�in1,i�n1,i � 1�, ƒ2 � �
i�1

a

�in2,i�n2,i � 1�,

g1 � �
i�1

a

�in1,i, and g2 � �
i�1

a

� in2,i,

[16]

where n1,i and n2,i are the number of gene copies in populations
1 and 2 during interval i. Then integration over each of the four
elements in � yields the prior probability

p�G� �
1

�max
�

�

p�G ���d�

�
1

�1,max�2,maxm1,maxm2,max

� �
�1

�
�2

�
m1

�
m2

p�G ��1,�2,m1,m2�dm2dm1d�2d�1.

[17]

The result of this integration is a product of four terms, including
two that take the same form as Eq. 12 for the scaled population
size parameters, as well as two migration terms, each of which
takes the form

�
0

mmax

mwexp�	g���m�dm � g���	w�1
�w � 1, 0, g���mmax� ,

[18]

where 
(a, 0, b) is the lower incomplete Gamma function.
Finally, recall that

p���G� � p�G���p����p�G�, [19]

where, for this model, the numerator is the product of Eq. 15 and
the prior distribution, and the denominator is given by Eq. 17.
Then, as with the case of a single-parameter model, p(��G) can
be used in Eq. 11 for each of a set of sampled genealogies.

The estimate of p(��X) obtained by using Eq. 11 has some
desirable properties. First, the integration over � will necessarily
equal 1, because it is equivalent to integrating each of the k
components of the sum, the result of each of which will necessarily
equal 1 (see Eq. 19). Second, because each of the component
functions that are summed in Eq. 11 are calculable and differen-
tiable over the prior of �, so is the overall function. This means that
the function can, in principal, be maximized for all, or any subset,
of the parameters in �.

Models with Population Splitting and Multiple Loci. Conventional
island models assume an equilibrium between migration and ge-
netic drift and cannot well represent histories that include recent
population-splitting events. Such splitting events are a typical
component of the speciation process, and they underlie the hier-
archical structure of the phylogenetic history of life on earth. By
incorporating population-splitting events into multipopulation ge-
netic models it becomes possible to conjoin phylogenetic models
with population genetics ones.

Described in supporting information (SI) Text is the two-
population ‘‘isolation with migration model,’’ in which there are six
parameters including three for population sizes (�1, �2, and �a,
where �a is the value of � in the ancestral population); the scaled
time at which the ancestral population gave rise to the two
descendant populations, t; and the two scaled migration rates, m1
and m2 (23, 25). In this context, G is partly a function of the splitting
time (23) and so it is not clearly feasible to develop a prior for G
by analytically integrating over t (unlike the case with only popu-
lation size and migration parameters). However, we can calculate
analytically the joint prior, p(G, t), and we can sample pairs of values
of G and t, from a Markov chain simulation. The result is an
estimate of the posterior density function for all of the parameters
apart from t,

p���X� �
1
k �

i�1

k

p���Gi, t i� , [20]

where � includes all parameters except t. Although t is not
integrated over analytically, the simulations do reveal an esti-
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mate of the marginal posterior density for t. Also described in
SI Text is a method for considering data from multiple loci that
vary in their neutral mutation rates.

Implementation and Examples. A computer program was written
that implements a Markov chain simulation for generating samples
from p(G�X) for models with one or two populations, as well as for
a two-population isolation with migration model (i.e., with a
population-splitting time parameter, t). The state space of the
Markov chain includes the prior distribution of G (and t if popu-
lation splitting is in the model), with a general Metropolis–Hastings
update criterion

min� 1,
Pr�X �G�, t��p�G�, t��q�G�, t�3 G , t�

Pr�X �G , t�p�G�q�G , t 3 G�, t�� � .

[21]

The update of G to G* is done by using branch sliding (14) in which
a randomly selected branch is moved a random distance in the tree.
The migration events originally on the branch are removed, and a
random number of new migration events is drawn from a Poisson
distribution, conditioned on there being an even or odd number of
migration events (depending on whether the starting and ending
populations of the branch are the same). The Poisson parameter is
taken to be the expected number of migrations over the span of the
new branch length, given the current number of migration events
that occur over the total length of the tree.

If the model includes t, then it is also necessary to do joint updates
of G and t. For these updates, we follow the method of Rannala and
Yang (34), in which the new value, t*, is drawn from a uniform
distribution over the interval {0, tmax}, and the times of all migration
and coalescent events in G before t are multiplied by t*/t, and the
times of events after t are summed with (t* 	 t). At evenly spaced
intervals, records are made of t, p(G, t), and of those quantities from
G that are needed to calculate p(G��, t). For the case of multiple
loci, the updates of the mutation rate scalars are done as in Hey and
Nielsen (25).

In general, it is expected that each genealogy will make its
greatest contribution to the overall probability over some limited
range of �. By including a large number of genealogies, sampled
from a long-running, well-mixing Markov chain that has reached
stationarity, it should be possible to obtain good estimates of p(��X)
for any value of �. Optimization of the estimate function, under full
or nested models, requires some care because the surface may be
multimodal over broad and fine scales, either because of the data
or because of the particular genealogies that happened to end up
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Fig. 1. A single population model was simulated with a sample of 20 gene
copies drawn from a population with a true population mutation rate of � �
20. Functions based on 10 individual sampled genealogies are shown along
with their mean (gray line) as well as the mean for 100 sampled genealogies
(black line).
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Fig. 2. Cumulative distributions of 	2�̂ calculated from Markov chain
simulations run on 100 simulated data sets. (A) The true model has two
populations of identical size, with simulated data sets sampled following: �1 �
�2 � 10, m1 � 0.5, m2 � 0.01, six loci, and 15 gene copies sampled for each
population per locus. The MCMC simulation generated 5,000 genealogies
with prior maxima: �1 � �2 � 100, m1 � m2 � 5. The observed cumulative
distribution of 	2�̂ is shown with that expected from a �2 distribution with 1
degree of freedom. The Kolmogorov–Smirnov test statistic (the greatest
departure between two cumulative distributions), is 0.0851, which does not
approach statistical significance. (B) The true model has two populations with
identical migration rates and population sizes with simulated data sets
sampled following: �1 � �2 � 20, m1 � m2 � 0.1, 25 loci, and six gene copies
sampled for each population per locus. The Markov chain simulations
generated samples of 8,000 genealogies with prior maximum values as
follows: �1 � �2 � 500, m1 � m2 � 1. The Kolmogorov–Smirnov test statistic
is 0.0791, which does not approach statistical significance. (C) The true
model is an isolation with migration model with unidirectional gene flow.
Simulated data sets were sampled following: �1 � 20; �2 � 40, �A � 30, m1 �
0.15, m2 � 0, t � 10, 25 loci, and six gene copies sampled for each population
per locus. The estimated posterior density has four dimensions [for �1, �2 ,�A,

and m1 (note that m2 � 0)]. Given one parameter fixed at the boundary of
the parameter space, the likelihood ratio statistic, contrasting the true
model and the full five-parameter model, should be asymptotically distrib-
uted as a random variable that takes the value 0 with probability 0.5 and
takes on a value from a �2

1 distribution with probability 0.5 (23, 37). The
Kolmogorov–Smirnov test statistic is 0.0590, which does not approach
statistical significance.
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in the sample. After trying a number of approaches, we settled on
the simulated annealing algorithm that is implemented in the
AMEBSA code of Press et al. (35).

Fig. 1 shows an example for the simple case of a data set
simulated under a single population model (one parameter, � �
4Nu). Ten likelihood functions, each based on a single genealogy,
are shown together with their average as well as the average for 100
samples drawn from the same simulation.
Nested models and likelihood-ratio tests. In addition to an estimate of
the posterior density, p(��X), the method can also be used to study
nested submodels, e.g., a model with parameter space �r, where �r

contains a subset of the parameters in �, and the remaining
parameters take on fixed values. By using Eq. 11, the functions
p(��X)and p(�r�X) can be maximized to find the highest proba-
bilities and the associated parameter values, � and �r. Because the

posterior probability density of � is uniformly proportional to the
likelihood, p(��X) � cL(��X) and p(�r�X) � cL(�r�X), where c �
p(�)/p(X) Thus, the posterior density ratio equals the likelihood
ratio. If � is the log of the ratio of the highest likelihoods found
under each model, then this can be estimated from the ratios of the
two functions, each at its maximal value, �̂ � 1n(p(�̂r�X)/p(�̂�X)).
If the two density functions are good estimates of the true densities,
and if the data set X consists of a large number of independent
observations, then this ratio can be used in a conventional likeli-
hood-ratio test. If �r is the true model, then, for unbounded
parameters and under certain regularity conditions, we expect that
	2�̂ asymptotically will follow a �2 distribution with k degrees of
freedom, where k is the difference in the number of dimensions
(parameters) between �r and �.

To examine the actual distribution of 	2�̂, data sets were
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simulated under a particular model, �r. For each data set, a Markov
chain simulation was run to generate an estimate of the posterior
density function under the full model, p(��X). This function was
maximized over all parameters to generate p(�̂�X) and then
maximized over just those parameters that were free to vary in �r
to generate p(�̂r X), and 	2�̂ was calculated. Fig. 2 shows the
resulting cumulative distributions for three different models, each
of which is consistent with the corresponding �2 distribution,
showing that the asymptotic result holds approximately for these
moderately sized simulated data sets and that the added simulation
variance introduced by the method does not invalidate the use of the
classical likelihood-ratio tests. Additionally, the good fit of the �2

distribution suggests that the estimation and optimization of the
likelihood surface is reasonable accurate. Other simulations with
small data sets do show that, as expected with less data, that the
distribution of 	2�̂ will have a variance larger than that for the
corresponding �2 distribution.
Chimpanzee case study. To demonstrate the approach for a model in
which an ancestral populations splits into two, we considered the
case of two chimpanzee subspecies, Pan troglodytes troglodytes (the
Central African Chimpanzee) and Pan troglodytes verus (the West-
ern African Chimpanzee). This divergence has previously been

studied by using a Markov chain simulation in which the state space
includes both genealogies and model parameters for a data set of
48 genes drawn from the literature (36).

Fig. 3 shows the marginal posterior density estimates from the
original method (36), which generates histogram-based estimates,
and the new method. As expected, both sets of marginal density
estimates are very similar. Fig. 4 shows examples of contour plots
of marginal posterior density estimates for pairs of parameters.

Table 1 shows the likelihood ratio statistic for a series of nested
models applied to the chimpanzee data. All of the ratio statistics
were calculated as the difference between the highest posterior
probability for the full model and the highest posterior probability
for the nested model. Only two models were not rejected: the model
in which the two migration rates are equal to each other and the one
in which m2 is equal to 0. If we were to correct for multiple tests,
then other models would also not be rejected.

Discussion
Felsenstein’s equation has become a centerpiece of modern pop-
ulation genetics and phylogenetic analysis as computational ap-
proaches have been developed for faster and improved approxi-
mate solutions. Here, we describe an approach that provides greatly
improved access to a broad family of population genetics models,
i.e., those that can be described with one or more population size
and migration parameters. Relying on a Markov chain simulation,
the state space is limited to just the posterior density of genealogies,
thereby avoiding those MCMC mixing problems that arise because
of correlations between G and �, when both are part of the state
space (25). In addition, the method provides a convenient approach
for estimating likelihood ratios.

The finding that the estimate of the likelihood ratio, from nested
models, closely approximates the �2 distribution that is expected
under asymptotic assumptions is strong affirmation of the validity
of the approach, and it means that the method can be used for many
questions that involve a contrast of different demographic models.
Model selection and testing of demographic hypotheses based on
the full-likelihood function have often been neglected in the fields
of molecular ecology and population genetics because appropriate
tools for calculating likelihood ratios have not be available. The
methods described here should greatly alleviate this problem by
providing a powerful computational framework for estimating
likelihood functions and likelihood ratios.
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Table 1. Tests of nested models for P. t. troglodytes and
P. t. verus

Model (�) log(p(�̂�X)) 	2�̂ P df

�1 �2 �A m1 m2 7.734 	 	

�1 �2 �A m1 � 0 m2 5.976 3.516 0.03039* 1†

�1 �2 �A m1 m2 � 0 7.131 1.206 0.13606 1†

�1 �2 �A m1 � m2 6.403 2.663 0.10271 1
�1 � �2 �A m1 m2 	24.925 65.319 6.4 � 10	16* 1
�1 � �2 � �A m1 m2 	38.951 93.37 5.3 � 10	21* 2
�1 � �2 �A m1 � m2 	31.34 78.148 1.1 � 10	17* 2
�1 � �2 � �A m1 � m2 	60.058 135.584 3.4 � 10	29* 3
�2 �1 � �A m1 m2 1.548 12.374 0.00043* 1
�2 �1 � �A m1 � m2 0.097 15.274 0.00048* 2
�1 �2 � �A m1 m2 4.73 6.01 0.01423* 1
�1 �2 � �A m1 � m2 3.131 9.207 0.01002* 2

*The probability of achieving the test statistic by chance under the null model
is �0.05.

†When the null model is true and has a parameter fixed at the boundary of the
parameter space, the expected distribution is a mixture. In the case of a single
fixed parameter, 	2�̂ should be asymptotically distributed as a random
variable that takes the value 0 with probability 0.5 and takes on a value from
a � 2

1 distribution with probability 0.5 (23, 37).
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